Convergence Theorems of Approximate Proximal Point Algorithm for Zeroes of Maximal Monotone Operators in Hilbert Spaces
نویسندگان
چکیده
In this paper, we introduce two kinds of iterative algorithms for finding zeroes of maximal monotone operators, and establish strong and weak convergence theorems of the modified proximal point algorithms. By virtue of the established theorems, we consider the problem of finding a minimizer of a convex function. Mathematics Subject Classification: Primary 47H17; Secondary 47H05, 47H10
منابع مشابه
A Hybrid Proximal Point Algorithm for Resolvent operator in Banach Spaces
Equilibrium problems have many uses in optimization theory and convex analysis and which is why different methods are presented for solving equilibrium problems in different spaces, such as Hilbert spaces and Banach spaces. The purpose of this paper is to provide a method for obtaining a solution to the equilibrium problem in Banach spaces. In fact, we consider a hybrid proximal point algorithm...
متن کاملA Proximal Point Algorithm for Finding a Common Zero of a Finite Family of Maximal Monotone Operators
In this paper, we consider a proximal point algorithm for finding a common zero of a finite family of maximal monotone operators in real Hilbert spaces. Also, we give a necessary and sufficient condition for the common zero set of finite operators to be nonempty, and by showing that in this case, this iterative sequence converges strongly to the metric projection of some point onto the set of c...
متن کاملW-convergence of the proximal point algorithm in complete CAT(0) metric spaces
In this paper, we generalize the proximal point algorithm to complete CAT(0) spaces and show that the sequence generated by the proximal point algorithm $w$-converges to a zero of the maximal monotone operator. Also, we prove that if $f: Xrightarrow ]-infty, +infty]$ is a proper, convex and lower semicontinuous function on the complete CAT(0) space $X$, then the proximal...
متن کاملConvergence of a proximal point algorithm for maximal monotone operators in Hilbert spaces
* Correspondence: hbshigh@yeah. net College of Science, Hebei University of Engineering, Handan 056038, China Full list of author information is available at the end of the article Abstract In this article, we consider the proximal point algorithm for the problem of approximating zeros of maximal monotone mappings. Strong convergence theorems for zero points of maximal monotone mappings are est...
متن کاملA proximal point method in nonreflexive Banach spaces
We propose an inexact version of the proximal point method and study its properties in nonreflexive Banach spaces which are duals of separable Banach spaces, both for the problem of minimizing convex functions and of finding zeroes of maximal monotone operators. By using surjectivity results for enlargements of maximal monotone operators, we prove existence of the iterates in both cases. Then w...
متن کامل